25 research outputs found

    Lower Bounds for (Non-Monotone) Comparator Circuits

    Get PDF
    Comparator circuits are a natural circuit model for studying the concept of bounded fan-out computations, which intuitively corresponds to whether or not a computational model can make "copies" of intermediate computational steps. Comparator circuits are believed to be weaker than general Boolean circuits, but they can simulate Branching Programs and Boolean formulas. In this paper we prove the first superlinear lower bounds in the general (non-monotone) version of this model for an explicitly defined function. More precisely, we prove that the n-bit Element Distinctness function requires ?((n/ log n)^(3/2)) size comparator circuits

    Colourful TFNP and Propositional Proofs

    Get PDF
    Recent work has shown that many of the standard TFNP classes - such as PLS, PPADS, PPAD, SOPL, and EOPL - have corresponding proof systems in propositional proof complexity, in the sense that a total search problem is in the class if and only if the totality of the problem can be efficiently proved by the corresponding proof system. We build on this line of work by studying coloured variants of these TFNP classes: C-PLS, C-PPADS, C-PPAD, C-SOPL, and C-EOPL. While C-PLS has been studied in the literature before, the coloured variants of the other classes are introduced here for the first time. We give a family of results showing that these coloured TFNP classes are natural objects of study, and that the correspondence between TFNP and natural propositional proof systems is not an exceptional phenomenon isolated to weak TFNP classes. Namely, we show that: - Each of the classes C-PLS, C-PPADS, and C-SOPL have corresponding proof systems characterizing them. Specifically, the proof systems for these classes are obtained by adding depth to the formulas in the corresponding proof system for the uncoloured class. For instance, while it was previously known that PLS is characterized by bounded-width Resolution (i.e. depth 0.5 Frege), we prove that C-PLS is characterized by depth-1.5 Frege (Res(polylog(n)). - The classes C-PPAD and C-EOPL coincide exactly with the uncoloured classes PPADS and SOPL, respectively. Thus, both of these classes also have corresponding proof systems: unary Sherali-Adams and Reversible Resolution, respectively. - Finally, we prove a coloured intersection theorem for the coloured sink classes, showing C-PLS ? C-PPADS = C-SOPL, generalizing the intersection theorem PLS ? PPADS = SOPL. However, while it is known in the uncoloured world that PLS ? PPAD = EOPL = CLS, we prove that this equality fails in the coloured world in the black-box setting. More precisely, we show that there is an oracle O such that C-PLS^O ? C-PPAD^O ? C-EOPL^O. To prove our results, we introduce an abstract multivalued proof system - the Blockwise Calculus - which may be of independent interest

    On Semi-Algebraic Proofs and Algorithms

    Get PDF

    Extremely Deep Proofs

    Get PDF
    We further the study of supercritical tradeoffs in proof and circuit complexity, which is a type of tradeoff between complexity parameters where restricting one complexity parameter forces another to exceed its worst-case upper bound. In particular, we prove a new family of supercritical tradeoffs between depth and size for Resolution, Res(k), and Cutting Planes proofs. For each of these proof systems we construct, for each c ? n^{1-?}, a formula with n^{O(c)} clauses and n variables that has a proof of size n^{O(c)} but in which any proof of size no more than roughly exponential in n^{1-?}/c must necessarily have depth ? n^c. By setting c = o(n^{1-?}) we therefore obtain exponential lower bounds on proof depth; this far exceeds the trivial worst-case upper bound of n. In doing so we give a simplified proof of a supercritical depth/width tradeoff for tree-like Resolution from [Alexander A. Razborov, 2016]. Finally, we outline several conjectures that would imply similar supercritical tradeoffs between size and depth in circuit complexity via lifting theorems

    Average Case Lower Bounds for Monotone Switching Networks

    Get PDF
    An approximate computation of a function f : {0, 1} n → {0, 1} by a computaional model M is a computation in which M computes f correctly on the majority of the inputs (rather than on all inputs). Lower bounds for approximate computations are also known as average case hardness results. We obtain the first average case monotone depth lower bounds for a function in monotone P, tolerating errors that are asymptotically the best possible for monotone circuits. Specifically, we prove average case exponential lower bounds on the size of monotone switching networks for the GEN function. As a corollary, we establish that for every i, there are functions computed with no error in monotone NC i+1 , but that cannot be computed without large error by monotone circuits in NC i

    Adventures in Monotone Complexity and TFNP

    Get PDF
    Separations: We introduce a monotone variant of Xor-Sat and show it has exponential monotone circuit complexity. Since Xor-Sat is in NC^2, this improves qualitatively on the monotone vs. non-monotone separation of Tardos (1988). We also show that monotone span programs over R can be exponentially more powerful than over finite fields. These results can be interpreted as separating subclasses of TFNP in communication complexity. Characterizations: We show that the communication (resp. query) analogue of PPA (subclass of TFNP) captures span programs over F_2 (resp. Nullstellensatz degree over F_2). Previously, it was known that communication FP captures formulas (Karchmer - Wigderson, 1988) and that communication PLS captures circuits (Razborov, 1995)

    Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling

    Get PDF
    We establish an exactly tight relation between reversible pebblings of graphs and Nullstellensatz refutations of pebbling formulas, showing that a graph G can be reversibly pebbled in time t and space s if and only if there is a Nullstellensatz refutation of the pebbling formula over G in size t+1 and degree s (independently of the field in which the Nullstellensatz refutation is made). We use this correspondence to prove a number of strong size-degree trade-offs for Nullstellensatz, which to the best of our knowledge are the first such results for this proof system
    corecore